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ABSTRACT

Revision of the mathematical formalism of fluid dynamics suggests that some physical
inconsistencies (infinite t ime of approaching equilibri &, and fully determinist ic solut ions to
the Navier-Stokes equations) can be removed by relaxing the Lipschitz conditions, 1.e., the
boundedness of the derivatives, in the consti tutive equations. Physically such a modifica-
t ion can be interpreted as an incorporation of an infini tesimal st at ic friction in the con-
stitutive law. A modified version of the Navier-Stokes equations is introduced, discu ssed,
and illustrated by cxamples. It is demonstrated that all the new effects in the modified
model emerge within vanishingl y small neighborhoods of equilibrium st ates which are t he

onl y domains where the governing equat ions are different from classical.

1. INTRODUCTION

One of the central problemsin fluid dynamics is to explain how motion which is
described by fully deterministic governing equations can be random. Indeed, let us consider
exponent ial growth of a vort icit y component w:

w=w.eM, 0< A< oo (1)

Obviously a solution with an infinitesimally close initial condition

At

w=we,w =w,+¢e, e—0 (2)

will remain infinit esimall y close to t he original one:




|lw—O|=€eeM— 0 at t<oo if €20 (3)

during all bounded time intervals.

This means that random solutions can result only from random initial conditions
when €in (2) is small, but finite rather than infinitesimal. in other words, classical fluid
dynamics can explain amplificat ions of random motions 1y the mechanism of instability,
but it cannot represent their origin using mathematical formalism.

The recent discovery of chaotic motions in nonlinear dynamics demonstrates that
the same kind of problems exists in tile general formalism of Newtonian mechanics when
motions described by fully deterministic models appear to be random. A revision of this
formalism was presented by Zak [1- 3], and here we will briefly discuss it.

The governing equations of classical dynamics may be derived either from Lagrangian
functions, from variational principles, or dime.tly from Newton’s laws of motion, and they
may be presented in various equivalent forms. However, three is one mathematical restric-
tion on all such forms: the differential equations describing a dynamical system

&= vi(xy, 20,y 2,) 1=1,2,--- n 4)
must satisfy the Lipschitz condition, which expresses that all the derivatives

9vi |< oo (5)

Ox;

must be bounded. This mathematical restriction guarantees the uniqueness of the solution
of (4), subject to fixed initial conditions.

This condition allows one to describe the Newtonian dynamics within the mathemat-
id framework of the classical theory of differential equations which guarantees its Pre-
dict ability. That, in t urn, leads to such effects as infinite time of approaching an attractor,
infinite time for escape of a repeller if changes in initial conditions are infinitesimal, un-
tractability of two trajectories which originally are “very close”, but diverge exponentially,
cte.




Hence, there are a variety of phenomena whose explanations cannot be based directly
upon classical dynamics: in addition, they require some “words” about a scale of observa-
tion, “very close” trajectories, etc.,

Turning to the governing equations of classical dynamics:
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where L is the Langrangian, ¢i, ¢; are the generali zed coordinates and velocities, and R
is the dissipation function, one should recall that the structure of (dis -+, ¢n ) is not
prescribed by Newton's laws. Some additional assumptions are to be made in order to
define it. The “natural” assumption (which hasnever been challenged) is that these
functions can be expanded in a Taylor series with respect to (zequilibrium states: ¢i= O.
a’k
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obviously, this requires the existence of the derivative: |

A departure from that condition was proposed in [2], (sce the Appendix), where the
following dissipation function was introduced:

R—mL .IL&'"I“’ (7)

in which @i are positive constants, N is the number of the friction forces applied to the
points i and

a —

)
;%5 <1,p>1, (8)

while p is a large odd number.
By sclecting a large p, one can make k close to 1 so that (“7) is almost identical to the

classical one (when k = 1.) everywhere, excluding a small neighborhood of the equilibrium
point ¢;=0, while at this point:

l-——) oo at q.j — 0. (9)




Hence, the Lipschitz condition is violated, the friction force F,= --~ grows sharply at the
equilibrium point,and then it gradually approaches its “classical” value. This effect can
be interpreted as a mathematical representation of a jump from st atic to kinetic friction,
when the dissipation force does not vanish with the velocity,

It appears that this “small “ difference between friction forces at k = 1 and k < 1
leads to fundament al changes in Newtonian dynamics. In order to demonstrate it, we will
consider the relationship between the total energy ¥ and the dissipation function R:

lE . OR
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Within a small ncighborhood of an equilibrium state (where the potential energy can be
set zero), the energy E and the dissipation function R have the order, respectively:

E~gl, R~@'' at E-o (11)
Hence, the asymptotic form of (10) can be presented as:

dE
dt

= AE*'Y? a4t E -0, A= const (12)

If A <0 and k <1, theequilibrium state E =0 is an attractor where the
Lipschitz condition (/ dE/dE|— oo at E — O) is violated. Such a terminal [1] attractor is
approached by the solution originated at E = AFE, > 0, in finite time:

0 dE 2N E((]l_k/z)
to = - 0. (13)
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Obviously, this integral diverges in the classical case k > 1, where t, — 0o. The motion
described by (12) has a singular solution E = O and a regular solution:

—k/ 1 2/1-k
E ::[ AE(()] k/l) -I- “2‘A(1—k)t](2/] k) (14)

In a finite time, the motion can reach the equilibrium and switchto the singular solution
E = O, and this switch is irreversible.




The property of the solution to the equation x = —x'/3 (which is of the type of Eq. (12)),
is illustrated by Fig. 1,a.

As is well known from dynamics of nonconservative systems, dissipative forces can
destabilize the motion when they feed the external energy into the system (the transmission
of energy from laminar to turbulent flow in fluid dyn amics, or from rot at ions to oscillat ions
in the dynamics of flexible systems ). In terms of (1 2), it would mean that A > 0, and the
equilibrium state £ = O becomes a terminal repeller(1).

If the initial condition is infinitely close to this repeller, the transient solution will
escape it during a finite time period (Fig. 1),

- = < 00, (15)
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while for a regular repeller, the tire? would be infinite.

Expressing (12) in terms of the? velocity at i = 1, ¢ = v,

U= ka, B = const >0, (16)
one arrives at the following solution:

1 1/2
v - :t{B(l LU (17)

As in the case of a terminal attractor, here the motion is also irreversible: the time-
backward motion obtained by formal time reversalt + — t in (17) is imaginary, since p is

an odd number (sce (8)).

But in addition to that, the terminal repellers possess even more surprising charac-
teristics: the solution (1 ‘7) becomes totally unpredictable. Indeed, two different motions
described by the solution (17) are possible for “almost the same”(v,=+e+ O, or
v, = —e + 0at t - 0) initial conditions. Assuming that positive and negative distur-
bane.es d¢ occur with equal probability 0.5, one a1 rives at the situation when instability
and non uniqueness of the solution impart elements of stochasticity into the postinstability

behavior.
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Thus, a terminal repeller represents a vanishingly short, but infinitely powerful “pulse
of unpredict abilit y* which is pumped into the system via terminal dissipative forces. Ob-
viously, failure of the uniqueness of the solution ]iere results from the violat ion of the
Lipschitz condition at v ==

As is known from classical dynamics, combination of stabilizing and destabilizing
effects can lead to chaos. In order to describe similar effects i n dynamics with terminal
dissipative forces,let us slightly modify (16) assuming that B =: B, cos wt.

Then stabilization and destabilization effects alternate.  With the initial condition
v-— O at t — O, the exact solution to (16) consists of both a regular solution:

. (1/1-k)
Bo(1 - k) % , v#0, (18)

v=3 | —wnw
W

and a singular solution v = O. During the first period O < { < 7/2w, the? equilibrium
point v = O is a terminal repeller. Therefore, within this inter val, the motion can follow
onc of two possible trajectories (18) (each with probability 1/2). during the next period
/2w <t <3n /2w, the equilibrium point becomes a terminal attractor; the solution
approaches it at ¢ = 7w and it remains motionless until ¢ > 37 /2w. After that the.
terminal attractor converts into a terminal repeller, and the solution escapes again, etc.
It is important to notice that cach time the system escapes the terminal repeller, the
solution splits into two symmetrie branches, so that there are 2“ possible scenarios of
oscillations with respect to the center v == O, while each scenario has the probability
27" (n is the number of cycles), Hence, the motion (18) resembles chaotic oscillations
known from classical dynamics. It combines random characteristics with the attraction
to a center. However, inthe classical case, the ch aos is caused by a supersensitivity to
the initial Conditions, while the uniqueness of the solution for fixed initial conditions is
guaranteed. In contrast to that, the chaos in the oscillations (1 S) is caused by the failure
of the uniqueness of the solution at the equilibrium points, and it has a well-organized
probabilistic structure. Since tile time of approaching the equilibrium point v = O by the
solution (18) is finite, this t ype of chaos can be call ed t erminal [1- 3] or nondet erminist ic.

Within the framework of terminal dynamics, formations of new patterns of motion can
be understood as chains of terminal at tractions an d repulsions. As demonstrated above,
during each terminal repulsion the solution splits into two symmetric branches, and the
motion can follow each of them with equal probabi lit y.

As shown in [2,3] such a scenario can be described by a system of differential equa-




tions with terminal equilibrium points. In contradistinction to stochastic equations, here
randomness results from the violat ion of the uniqueness of t he solut ions, and therefore, the
differential operator itself generates random motions. Because of that, terminal dynamics
possessed a well-organized probabilistic structure, described by a Fokker-Plane.k type of
equation whose coefficients are uniquely defined by fully det ermiinistic parameters of the
original dynamical system [2,3]. At the same time, it should be stressed again that all
the new effects of termin al dynamics emerge within vanishingly small neighborhoods of
equilibrium st ates which are the only domains where the governing equations are different
from classical.

Now we will formulate the basic physical assumptions un derlying the paper.

The dynamics of a fluid, on the macroscopic level, is described by the Navier-Stokes
equations which are based upon Newton>s laws. H owever, besides that, some additional
physical assumptions are needed to introduce the dissipation function which defines the
rheology of the stress-strain relationshipsina fluid. Onthe macrc)sc.epic level, these
assumptions are based upon the two laws of t hermod ynami cs, as well as upon the principles
of kinetics. The rest of the “details” must be found from experiments. However, there is
another set of assumptions (which are of a mathema tical nat ure) used in formulation of the
Navier-Stokes equations. The most powerful of them is the requirement of differentiability
(as many times as necessary) of all the macroscopic parameters with respect to time
and space coordinates. Such a requirement is fully compatible with the principles of
the macroscopic level of description. However, another mathematical assumption about
the expandability of the dissipation function in a Taylor series with respect to the state of
Equilibrium (which is used for deriving tilt? simplest version of the constitutive law) is not so
“innocent’’as it may look on first sight. Indeed, from the physical viewpoint, it eliminates .
the possibility of static friction or plasticity effects which may exist within the infinitely
small neighborhood of equilibrium states. The models which describe such effects are well
known [5], and they are fully compatible with thelaws of mechanics and thermodynamics..
From the mathematical viewpoint, the assumption 1 about the expandability y of a Taylor
series of the dissipation function enforces the Lipschitz condition at the equilibrium states,
and that, in turn, leads to infinite time of approaching these states. The main objective
of this paper is to show that by relaxing the Lipschitz condition in the constitutive law of
viscous liquids one will 1 1ave a much more realistic scenario of behavior of liquids in the
domains approaching to and departing from the equilibrium states.

2. CONSTITUTIVE EQUATIONS

Following theideas described in the Introduction, we will introduce and discuss ere




the non- Lipschitzian version of the dissipation function for a liquid in the same way as it
was done in (7).

As follows from extremmun principles inirreversible thermodynami es[4], the simplest

form of the dissipation function for an isotropic liquid which may incorporate non Lips-

chi t zian propert ies, is the following:

R = D(I,) (19)

where D is a posit 1ve-definite different iable fund ion of the secon d invariant I, of t he rate-
of-strain, tensor €:

e=def v = %(Vv -1 v, (20)

i.c.,

I'), = gajkt‘.kj. (21)

“

Here €5 are the components of the tensor e:

1/0v; 0Ouvu
e = _(-_v_: N c.v_k) (22)

o\ 9, oo
Z O.I,k ().I,J
while v j are the component s of t he veloci ty vector v.

The dissipation function (19) defines the devia torie stress tensor:

1D,

Tik. 5 ik (23)

The isotropic, part of the stress tensor can be presented in the simplest form (since .v =
0):

o= —p (24)




where p is the pressure.
Turning back to Eq. (19) let us specify the dissipation function as following;:
\ k-1
T
pD = 4/(%-) I (25)
0

where g’ and ¢, are positive constants with the dimensions of viscosity s and the rate-of-
strain €, respectively, while k <1 is given by Eqg. (8).

Then the deviatoric stress tensor follows from Eqs. (23) and (25):

Iy k-
\/—;)k 1 €k

Ok = 2//( c

(26)

Eqg. (26) is different from the Newtonian liquid only within an infinitely small neigh-
borhood of the equilibria states where

I, — o, i-fi-,ﬁjk,”ijO (27)

Otherwise

(=) g (28)

as follows from (26) and (2 S), ' = 2yt where jeis the c.lassie.al viscosity.

One can verify that the Lipschitz condition for the function (26) at {2 + O is violated
since

0ok

e |— oo at I, -0 (29)
ik

Mathematical consequences of this property (which are similar to those described in the
Introduction) will be discussed in the next section.
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The physical meaning of the property (23) is clear: it describes a limit case of a
viscoplastic body when the domain of plasticit y is vanishing y small, see Fig. 2.

Let US summarize now all the? arguments for sclecting k hased upon Eq. (8).

Firstly, £ must be dose. to 1

k-1 |« 1

to preserve classical results in domains which exclude only small neighborhoods around
equilibria (see Eq. (28)).

Secondly, £ must beless then 1

0<k<l

to introduce the plasticity effects around equilibria via the relaxation of the Lipschitz
condition (see Eq. (29)).

Thirdly, k£ must berepresented by a fraction with an odd numerator and an odd
denominator in order to preserve the stress-strain relationships in the form given in Fig,.
2. Indeed, in case of an even numerator, the left branch in Fig. 2 will be positive, while
in case of an even denominator, it will be imaginary. QObviously both cases are physically
unrealist ic.

Hence, actually Eq. (8) minimizes the degree of arbitrariness to which the constant k
is defined. It should be noticed that similar model was discussed by H. Ziegler [5] where
he introduced a limit case of a viscoplastic model.

In case of a two-dimensional flow where the velocity can be expressed via the stream
function :

0 Oy

and therefore,
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Eq. (26) reads:

2 \2 92p  Op\2TF 9%
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In the simplest case of a two-dimensional unidirectional flow:

vy =u, vy =v3 =0, 017 =0y = 033 =013 == 093 =0

t he only non-zero component of the stress tensor is:

v 1—k [ Ou k
o1 =' ik _O_JZ A o= 2

This case was analyzed in [2].
Eg. (31)-(36) will be exploited inour further discussions.
3. GOVERNING EQUATIONS

Substituting the constitutive equations (26) into the momentum equations:

ov
P(E +VVV) =—-Vprp+V.o
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(33)

(34)

(35)

(36)

37)




and taking into account the identity

V(vA)=ay.A+ A Va (38)

holding for arbitrary tensor A and scalar «, one obt ains the non- Lipschit zian version of
the Navier-Stokes equation:

ov S ' =B
p(_éﬁ"”va): - Vp+ LT VAoV + v 4 (vv e wvT). V (1, 7)] (39)

where

1 —k
o= 5;/63, b= const

This equation must be complemented by the condition of incompressibility:

v.v=20 (40)

Eqg. (39) is different from the Navier-Stokes equation only within vanishingly small neigh-
borhoods of equilibria whine

I, + O, 1e.0—- 0O, ¢ O. (41)
Otherwise

k=1

P} k1
L7 ~1, y(I,7 )~0, et ~1 (42)
which reduces Eq. (39) to its classical form:

ov T
”('a—t +vyv)=-—Up+tpv.(Uv+yv) (43)
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In the particular case (35)-(36) of a two-dimensional unidirectional flow, Eqs. (39)-
(40) reduce to one equation:

Ou . Ou

9u e 82;1 I
ot = Jxy

)k—] "oy V=T (44)
9z, p

which is different from the classical diffusion equati on

L
-(‘)—,l: == ]/5;;% (45)
only if
a,
| a_j |- 0 (46)

4 LARGE-SCALE EFFECTS

Let us evaluate the range of motion scales where the proposed model describes special
effects missed 1n the classical description.

Turning to the constitutive equation (19) and expanding it ina Taylor series:

R=oay I +ayl? +--- ctc. (47) _

one can verify that the Newt onian liquid described by th e Navier- St ekes equation corre-
sponds to thecase when only the first term in Eq. (47) is kept. That is why this simplest

model is valid only for such velocit y gradients whicl1 are relat ively small in comparison to
those on the. molecular scale.

The same conclusion can be made based upon st atistical mechanical concepts when
the non- equilibrium component of the Maxwell distribution function is expanded ina

Taylor series.

However, there is another possibility in representing Eq. (47), for instance:

R = a_1(12)—1 + a_.z(‘[,z)"2 + ... et (48)

13




It hias never been exploited because of the mathematical “inconvenience” caused by

the singularity y at equilibria where I2— O.

The proposed model defined by Eq. (25) belongs to the same type as Eq. (48),
although it has a weaker singularity:

IR
R— 0, but ai —o00 at I, — 0 (49)
(112

i.e., at equilibria the Lipschitz condition is violated.

It should be expected that contrary to the case (47), the constitutive laws of the type.
(48), including the proposal model, are taking into account the large scale motion effects.
Indeed, as pointed out above, the proposed model describes new cffects when the? velocity
gradients are small in the sense that

VI < & (50)

Here €0 is the physical constant of the liquid introduced by the constitutive equation
(25). Since its dimensionality is:

(eo) = —, (51)

sce

one canint reduce the time scale Ty of the mot ions descrilhed by the proposed model.

Indeed, based upon Egs. (50) and (51), one obtains:

whence

T, > - (53)
€o

The length scale L can be found from the condition:
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Lo=ﬁﬁz./—€%, (54)

The evaluations (53) and (54) demonstrate that the proposed model deseribes large scale
motion effects, i.e., motions close to equilibria where the velocities and their gradients are
datively small.

Turning to the governing equations (39), one can simplify them by ignoring the con-
vection terms of the acceleration which are small in comparison to similar viscous terms
in the domain of large scale motions (53), (54):

ov . it T T L
Po VPR {2’ V(v + uv) + (v + v ). v(l,? )1 (55)

The expression for the energy dissipation:

. * AT ') . k‘+*]
Bp=-2 (0“' + -‘ﬁ) dv (56)

2 J, \Oz;  Oux;

does not differ much from the? classical case (k =1), which means that it decreases with
the grows of the length scale:

. ) ~1 1 1
Ep~0O (LO 212 Rz) (57)

The same can be said about the dissipation stresses (see Eq. 26).

However, the dissipation forces 7.0, i.e., the contribution of the dissipation stresses
to the momentum equation, difler significantly from the classical case & = 1: they grow
sharply with t he decrease of the velocit y gradients, becoming unbounded at the equilib-
rium. As will be shown below, the last property is responsible for a finite time of approach-
ing equilibria. From a physical viewpoint this means that at equilibria the dissipation is
carried out, by static. friction.




Thus, the modification of the constitutive law which relaxes the Lipschitz condition
at equilibria by introducing a vanishingly small static friction, eliminates one of the least
‘(damaging’) inconsistency in fluid dynamics (as well asin classical dynamics): theoret i-
cally infinite time of approaching equilibria. However, asa “side-effect”, it eliminates a
more “damaging” inconsistency: the occurrence of stochastic motions in flows which are
described by fully determinist ic hydrodynamical models. As will be shown below, the re-
laxation of the Lipschitz condition at equilibria in combination with instability may cause
the failure of the uniqueness of solution to Egs. (39) and (40), and that can be represented
by additional stochastic components in the. solution. The instability mentioned above is
of the same type? as in Eq.(16): it is a supersensitivity to infinitesimal changes of initial
condition. At first sight it scems unlikely that at equilibria where the actual viscosity is
very large (strictly speaking, it is a static friction rather than viscosity), any instability can
occur at all. However, as well-known from the theory of hydrodynamic stability, viscosity
can be a destabilizing factor, for instance, in parallel flows where the conditions (41) are
well satisfied).

5> BEHAVIOR AROUND EQUILIBRIA

In this section we will analyze the behavior of a non-Lipschitzian liquid within van-
ishingly small neighborhoods of equilibrium st ates where t he condit ion (4 1) holds.

Our analysis will be based upon the energy bal ance for the liquid in a volume v with
the boundary s which for any isotropic liquid can be presented in the following form [1]:

' 2 2 - Ov;
%/E—g—— v = - 7{ [pv(%— + %) ~ (va)} dn -- /a,-k a:k dv (58)

Here vo denotes a vector with the components v;0;;, and n is the unit normal to the

surface s.

Confining our discu ssion to a two-dimensional flow and utilizing the expressions given
by Eqs. (30)-(34), onerewrites Eq. (59)in terms of the stream function i:

10 (100N (00N g o / N AN
20t Jy [\ 0 0ay) | YT T2, Ox§  Ouxi i

* &’y \* 0 O\ T [ 9 Oy 0%y 0% 31/)} .
+2v ]{{[(m> + (Eg - [)_I?) ] {awlawz Dy + (01:? - 0 ) 1 COS (v
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p 1|/ 0y 2 % 2 } (%)2—__(—_(?£>2 cos } s
—.7{{;+§[(5;) +(6y)] fawl * daz cosppds sy

where

*
£ yelk (60)
/)

ar(xy1x2), and (a1, z2) are angles bet ween the unit normal n and the coordinate axes
zy,x9, and the velocity vector v , respectively. 1 t is understood that these angles are
known from the boundary conditions.

Let us assume that

v.n = O, le,cosp = O, but (ve)n # o (61)

which means that the external low does not penety ate the volume boundary S, and there-

fore, the exchange of energy between the volume v and the external flow is carried out by
the viscous term (vo ).

Then the last term in Eq. (59) vanishes.

Suppose that

P = Py (t)h2(21, x2) (62)

Then the Eqg. (59 can be reduced to an ordinary differential equation for 1 (t):

1/.)1 =~"(—A + A‘z)?/’lk, A, >0, (63)

where
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= const

Ag =

8x,0x, or, dz2 dz? Axg
+ - = const

2 2
L) +2m) e

and

k=1

(2 (Qiz/:z ) aw)z_ﬂ
“= Oxy10xy Jr? Ox?

We will analyze Eq. (52) for two cases when

Ay — A= -B*<0
and
Ay — A =B*>0
In the case (67) assume that

Pt = 0) = 1§ > 0

which corresponds to the init ial kinetic energy of the flow:
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(68)
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N2 G\ 2
Ey = g(q/)?)Z‘/ [(%Z_f) + (?ﬁj) ]d:rdy >0 (70)

Then Eqg. (63) (under the condition (67)) describes the damping of the fluid motion due
to viscous stress. It has regular solution

i = (WD) 7F = " BA(1 — k)], (71)
and singular solution
'I/J] = 0 (72)
solution.
In a finite time
0\1—k
1 (v)) < oo if k<1 (73)

T eWBY1 - k)
the regular solution (71 ) approaches equilibrium, i.c. the singular solution (72). This time
depends upon the Constants k and €o which can be found from experimental measurements
of t().

It should be stressed that in the classical case, (k = 1), the solution to Eq. (63)
approaches the equilibrium (72) asympt ot ically, i.e. g— cm. That is why the parameter

k found from Eqg. (73) must beless than one.

In the Case (68) assume that

1/)‘1) -3 0, (74)

Pt = 0)

i.e., the liquid is in equilibrium,

E() =0 (75)
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Under the condition (68), this equilibrium is unstable. Indeed, Eq. (68) subject to
the initial rendition (74), has the form:

by = [ B — k)t)TE (76)

The solution (76) possesses a remarkable property: it departs the equilibrium so fast
that the velocity becomes finite despite vanishingly siall disturbances (74) (compare with
the classical case (3)). At the same time, with equal probability 1/2, this solution can
become positive or negative which means that the solution att ains stochastic properties.
It should be emphasized that this stochasticit y resul ts from the? relaxation of the Lipschitz
condit icm at equilibria, and that, in turn, leads to failure of the? uniqueness of the solut ion.
Thus, formal incorporation of an infinitesimal static friction in the constitutive equation of
liquid allows one to explain the statistical nature of turbulence: in domains of supercritical
Reynolds numbers, infinitesimal random components of the solution caused by the failure
of the Lipschit z condition, are amplified by the mechanism of instability and lead to fully

developed stochastic motions.

6. ATTRACTION TO EQUILIBRIUM AFTER SUDDEN MOVE OF
BOUNDARIES

In the previous section we have discussed two fundament ally new properties of the
mm- Lipschitzian model of liquid: a finite time of approaching equilibria, and occurrence
of stochastic solutions to the modified Navier-Stokes equations. Both of these effects are
in full agreement with experiments.

In this scction we will illustrate? the modified model by example of an unsteady unidi-

rectional flow induced by a sudden simult ancous move of bhot h lower and upper boun daries.

Utilizing the constitutive law (36), one can write the following governing equation:

Ju ke 0 u
— = 77
a " (Oy) Jy? (77)
subject to the following boundary and initial conditions, respectively:
_ Ou
u{ 0,t) = uo, 5—-((2,t) =0 0<t< 4o (78)
Y

20




u(y,0)=0, 0<y<{ (79)

Here u is the flow velocity parallel to the horizontal axis «,y is the axis normal to the
flow, 2¢ is the distance between the lower and upper boundaries, and v* is the modified
viscosity expressed by Eel. (60),u, is the initial velocity of the boundaries, andk is
expressed by Eq.(8).

The second boundary condition in (77) is formulated for the middle line between the

boundaries in virtue of the SYMMELrY of the problem.

For k=1 one arrives at the classical diffusion equation:

Ou O*u
5{ =V 5}/—2‘ (80)

The solution to this equation subject to the boundary and initial conditions (78) and

(79) is well known:

+ o0

3 'l2 2‘!’214 2 — 1
(1) = ug — 10 z_jo 2nl+ 16—‘2"9-—,‘2 ‘ gin ﬁl; g L (81)
O<y <¥f, 0<t <40 (82)

where v is the kinematic viscosity.

obviously, this solution is valid for Eq. (77) in the domains where the condition (28)
is satisfied, i.e., where

| g—lﬁ |~ O(eo) (83)
Y

As follows from the solution (81), the condition (83) holds if

0 <t<t,, (84)
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where

1
Ly 0(5_0)’ (85)

Turning to Eq. (77), let us introduce a new variable u:

U == 60’!7. (86)

whose dimensionality is :

[@] = L since [eo]) = T7! (s7)

Thercfore,

511G T e

Then Eq. (77) can be rewritten in the form:

i o\ 1624
5-(5) o )

Since we are looking for the solution to (89) in the domain t > -t*, the boundary and

initial conditions now are formulated as:

. . Ou
00, ) = iy, o 0,1)=0, t, <t<+o0 (90)
u(y,ty) =1, 0<y <l (91)

Here




o T
Up = € Ug, |I™ Z€g +ur

(92)

where u* is velocity att== ¢, obtained from the classical solution (81) which is valid for

0<t<t,

(93)

Seeking the solution to Eq. (89) in the domain ¢t > t,fork < 1 (see Eq. (8)) in the

form

U= g + ur(t)us(y)

onc obtains:

iy 4 At =0, (4 = duy/dt), X = const

wl (u))F=1 + Ay = o, (uf, = duy/dy)
the general solutionto Eq. (96) has the form:

J

1 /\ 2 k41 ,

where Cyand C2 are arbitrary const ants.

As follows from (97), y is a continuous function of k, so that

y(k) - y(1) if k — 1, (see Eqg. (8))

Hence, Eqg. (97) can be approximated by the classical solution:
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(96)

(97)
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-1

1 A 2
y o= / —-'U;' -+ C] dUQ -+ C'Q (99)
2 2
and therefore,
+ 00 2
4 1 C2n+41- (On+ D)7
9 = s I AL A S I
Uy - Z TSR 2 A [ o ] (loo)

For each A, in (92), one can obtain a particular solution to Eq. (95):

u '™ =[C, — (1= E)wAud)™+,Cp = const (101)

However, since Eq. (95) is essentially nonlinear, the superposition principle is not appli-
cable here. In order to circumvent this difficulty, we will confine ourselves to the solution
for sufficiently large time.

t > 1, (see Eq. (85)) (102)
where the lowest mode corresponding to

2
T
Ao = 7 (103)

dominates over the others.

Then the solution to Eq. (89) reduces to:

2

.. 41 ATV e LTy
U,:uO{l—;[CU—(l-k)miJl k}hll) 5[,, t > 1. (104)

The constant Co can be found by matching the solutions (81) and (104) at ¢t = t,, y = £:

-k p2(1 — B
C() = ¢ 4t2e + __(_____)_

105
4€250 ( 0)
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while

{ 4 _ =2y
i o=l e ﬂjm‘ﬁ 7;% (106)
Finally, the solution to Eq. (77) is:
4 [ —z20-kp n%(1 - k)v = Y
U= uo{l - [e e —(1-k Y t sin 7, t 2>, (107)

while for O < ¢ < {, the solution can be presented i the classical form (81),

Although Eq. (107) represents an approximate solutionto Eq. (77), it still preserves
its fundamental property: the finite time tg of app: oaching the equilibrium:

hoty= g 40 TP 10
« = — — 402, < -+00 S
T e (1- lk)ﬂ’zlle ’ (10s)

As could be expected, this time depends upon two new physical constants of the. liquid:
k and ¢,.

7. SUDDEN START FROM REST

Continuing the analysis of the Proposed model of a fluid, in this section we will pose *
the following problem: find the velocit y field and the drag forces induced by a particle of
a vanishingly small size suddenl y start ing from rest. This problem is very important in
a variet y of physical contexts, such asthe settling of sediment in a liquid, and the fall of
mist dropletsin air. Nevert heless, from a formal ma thereat i cal viewpoint, for a Newtonian
liquid such a problem does not make much sense: all the hydrodynamical effects vanish
when the size of the particle becomes infinitesimal.

Indeed, invoking the Stokes solution for a moving sphere,

3
Y = ursin? @ %? - 3—1?—3), (109)
F = 6mapu (110)
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one obtains:

-0, Fs01if a—0 (111)

where a is the radius of the sphere.

But if this sphere moves in an unbounded volume, any finite size is “vanishingly small”.
That is why the smallness of the size? of a particle is actually understood as the smallness
of the Reynolds number Re. However, expressing t 1 1e drag force in (11 O) via the Reynolds
number, one arrives at a singularity y for the drag coefficient:

Cp = 2, oo if Re—0 (112)
Re

Thus, the classical approach to the problem posed above gives only qualitative rather that
guantitative results.

We will start with the plane flow in the domain of small velocity gradients where

Vi, <1 (113)
€0

Therefore, the momentum equations for this case can be reduced to the form (55), i.e.,

(9 (821/) 821/)) 820']] 020'12 02012 02(722

9 — Yo T2 902 114
At \ 0z = Ox} Oz, 01y i dr? Ox’ Ox,0xq (114)

in which 011, C3,2; and 022 are expressed by Eqs. (32), (33) and (34), respectively.

We will show that this equation has a class of solutions which is fundamentally different
from those in the? classical case. For this purpose, let us secit the solution in the following
form:

P = at?(x) + @) (115)

Substituting (115) ito Eq. (1 14), one obtains:
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—, = _ 2k a = +(1 - k)ﬂ—l(k - 1)12—%1/,. (116)

The two signs for « can be expected if one recalls that, as follows from Eq. (8):

.20 -1 (117)
2n +1
where n is the one of the natural numbers
n=12,...ctc (118)
Then
1 2n + 1
- = ——7}:—-—-’ (119)
I--k 2

and the power 1 /(1 — k) includes the square root operation. (The expression in the square
brackets in (116) is positive for k given by Eq. (117)).

The solution (1 15) in terms of velocities can be presented in the form:

1

-

1 1— k 't 1—k
vy = :t.’lngg (ﬂlz‘) , Ug = :txw(ﬂ%—) (120)
1132 .'17]
here
f=%(1+ k)k (k- l)k“ = const (121)

while the physical constant gy is introduced by the constitutive equation (25).

One can verify that the expressions in the first brackets in £Q. (57) have the dimension
of velocity, and the expressions in the second brackets are dimensionless.

Substituting (87) into the momentum equations:
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Jdu; 1 dp | doyy | Qoyp Ovy _1 Jp + Joyy + Jogy

ot ——;i);r,l Oxy Oxy ’ Ot ;(9;1:2 Oxq Oz,

(122)

one concludes that

011 =0, o095 = O, VP = O, ie., p= const (123)

This means that the velocit y field represents a shear flow.

We will start with the formal analysis of the solution (120), First it should be noticed
that

i
1-k

1
t\ !k t

vy = v aegg (/51—) Uy = vt 1€ (/3%;) (124)
@]

e
€Ty

are also the solutions to Eq. (1 14), or Eq. (122), and therefore, Eqs. (120) represent
particular solutionsto (122) subject to the initial conditions:

vy =0, v, =0, at t=0 (125)

However, in addition to that, Eqs. (122) have a singular solution for the same initial
conditions (125):

vy=0,v2 = o0 (126)

which is not included in the family of the solutions ( 124). Obviously such a non-uniqueness
of solution is a result of violation of the Lipschitz condition at the (equilibrium. As in cases
analyzed in the previous sections (see Eq. (17) and (71 )), the solution (126) is unstable:
infinitesimal initial velocities

vy -0, v 50 at t=10 (127)
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transfer it into one of the solutions (120) which will rapidly escape from the equilibrium.
It is important to emphasize that the signs of the solutions (1'20) are defined by the signs
of the init ial conditions (127) which are random. Actually this is the origin of stochastisity

of the solutions to the Navier-Stokes equations modified to tile form (39).

However, one should recall that the solut icm (120) is valid only for those domains

where the condition (2S) is still true,i.e., when

61)1 Jv, vy

- b g5, I~ Oleo)

in which ¢, is defined by Eq. (25).

As follows from Eq. (120):

|av1 = _IL_/ 7t T |_‘9;‘i? |= __k___/g iyt
Oxg  1-k eo x? L PR x?

Hence, the solution (120) is not valid for the domain

pl 2 .
'1’13 Ty > To

while

104

2
"o

N 1—k
()(%), v = (}—fﬂk) = const

(128)

(129)

(130)

(131)

For this domain one has to apply the original version of the momentum equations (39)
which include the convective components of the acceleration (being dropped in Eq. (144)).

Let us now concentrate on some physical eflects described by the solution (120).

Consider a rigid particle at rest. Then it must be that:

_ 2 7 2
vy =wv =0, x],r5 < g
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This condition can be satisfied if one? combines the positive and the negative branches of

the solution (120) as following:

— ! " — !
v = vyt oy, vy = vyt vé’

where

gl
o = { +/3(w250)(2%)1-k for @ > —rg
1= 2 i
0 otherwise

1y —— )
vy = {”/3(45250)(’3?) =% for xy > rg
0 otherwise

1
1)' - {+/3(‘L160)(¥'§) —%  for €1 _>_ -1y
2= 2 ;
0 otherwise

T

iy —L—
v.'li — { "/3(41-‘160)(:%)1—1: for 21 > 1o
0 ()thel‘\ViS(j‘,

(133)

(134)

(135)

(136)

(137)

Thus, the solution (134)-(137) describes the flow around a rigid particle of the radius

7« = 1, at rest. But before discussing the cause of this flow, let us find the force of

interaction between the flow and the particle.

Obviously, this force can be found as:

2
Fy 2/ o1 rdy, le.,
0

. k

kp B\ T-E
Fy = Anrepreg| —— il
o °(1—k> (>

(138)

(139)

This equation is valid only until the condition (128) is satisfied, 1.e. (with reference

to Eg. (131)) until
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Fy < Frnax = O (Anpreg) (140)

Let us assume that some external force? F' is applied to the particle atrest. In con-
tradistinction to the classical case, the flow starts ioving, first raising the reaction force
(139), and only after that the particle starts moving. This situation resembles the behav-
ior of a rigid body on a rough surface which can start moving only after the applied force
exceeds the maximum static friction.

The maximum force due to infinitesimal static friction of the liquid is evaluated by
Eq. (140). It depends upon g, which is the physical constant characterizing this liquid.

The tim(?-delay for the? motion of the particle is found from the? condition (131)

2
At~ 0O (11’/—*) | (141)

where v is given by Eq. (131).

As follows from Eq. (141), this delay depends upon/ which is another physical

constant characterizing the liquid.

For

t> At,or F > Fry ax, (142) “

the? particle starts moving, and one has to apply t he original version of the momentum
equations (39) which in this domain will mine.idt? with the Navier-Stokes equations. This
means that in t he domain (142) t he veloci t y field and the drag force can be found from
the Stokes formulas (109) and (112) .

8. PHENOMENOLOGICAL APPROACH

As emphasized in the previous sections, both constants k and ¢, (see Egs. (8) and
(26)) represent additional physical properties of liquids, and therefore, they must be found
from experiments. However, in this section we will find both % and e, based upon phe-
nomenological concepts. For that purpose let us compare the solutions to Egs. (77) and
(80) for
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> =t, (143)

The solution to Eq. (77) expressed by Eq. (107) approaches the equilibrium at 1 = ¢,
where to is defined by Eq. (108), The solution to Eq. (SO) expressed by Eq. (81),
theoretically never approaches the equilibrium; however, in finite time it approaches a
domain of insensitivity where the velocity “oo is so small that it cannot be detected by
sensors. Hencee, the? actual time? ¢}, of approaching the equilibriwn by the solution (81) can
be found as:

L ﬁ—ﬂn[% (1 - 5)] (144)

where

=2 <1 (145)

in which %go is the value of the smallest detectable velocity, and

Ue=u at t = 1, (146)

Based upon up-t o-date level of measurement t echniques,

£2 0.01. (147)

Recalling that the solutions (S1 ) and (107) are different only within a small neighborhood
of the equilibrium, let us find “equivalent” values of k = k* and €0 =¢f, from the Condition
that the time ¢ of approaching the equilibrium by the solution (107), and the time t; of
approaching the domain of insensitivity are the same. Equating o and ¢ from Eqs. (108),
and (144), respectively, one arrives at a phenomenological relationship between k* and e5:

. m2(1 = k*)w
O T {(k - D1 - O} ¢

= (.01 (148)
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The second relationship between these parameters can be derived from the following
phenomenological concept. Turning to the constitutive law (26), one has to provide the
property that this law is sufficiently dose to the linear one for large velocity gradients
(which, however, are smaller than the molecular ve:locit y gradients ). Since the molecular
velocit y gradients are of the order of 1/~ where 7 is the Maxwell relaxation time, one can
write:

1 k-1
( - ) ~]-¢ (149)
EpT

This condition guarantees that the difference between the constitutive law (26) and the
linear law are within the bounds of accuracy of the velocity measurements for the entire
domain where the equations for a Newtonian liquid are applicable.

As follows from Eq. (149):

1 i
g =-(1-r= (150)

Eels. (148) and (150) express the phenomenological versions of the physical parameters &
and ¢, via the physical constant 7 and the accuracy of measurements . In contrast to k
and .5,, the const ants k* and €} are problem-dep endent. Indeed, Eq. (148) was derived
from the solution to a particular problem discussed in the section 6, and that is wily it
contains the representative length £. However, despite this limitation, Eqs. (148) and
(150) provide a good evaluation of the order of these parameters.

Eqgs. (148) and (1 50) solved for the water at 200C become:

2
cm
7 =107 %ec, € =0.01, v = 10*2]—, £ =10 em (151)
sec
and lead to the following values of £* and ¢ :
3109
k= 3111" €0 = 2.66.10 “’scc (152)

Now we can evaluate the parameters 3, v, ro , Fu.x and At introduced in the previous
section (see Eqs. (121),( 131), (140) and (141), respectively:
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= (153)

F2221077, y21, ro @at, Fuux =4.266 7.’10_5/)1/7‘,.

9. APPLICATION TO ACOUSTICS

So far we have considered only incompressible fluids, However, all the modifications

of the constitutive law can be applied to gases too. Indeed, turning to Eq. (25), one can

write [5]:
T\ k! A
pD = 2;1,'(Q> + ([LI 4 l/t”) (—-1> (154)
200 2 E¢

where ' is the second viscosity. Then, instead of Eq. (25) one obtains

7\ k1 7\ R ‘
: 2/t' (£> Ejk + [/L” (—1—> Eee - p] Ok (155)

Ep €0

Here

I = €4, (156)

is the first invariant of the rat c-of-st rain tensor, and 0;k is the Kronecker’s delta symbol.
The. momentum and mass conservation actuations instead of (39), and (40), take the

following form, respectively:

vp+ u'{ (-‘—g")k—l [ v (Vv + va)]

Q_._*_ v —_
P\ 5 vyv) =
k-1

‘ 7o\ A 1 LR I
+ (Vv- v’ ).V (—\/—_’> }+(/t + S ’)[(—2~> \VAVAE R VA'AV (—2) (157)
€o €o €0
Jp ~ B
Y + v.(pv) = 0. (15s)
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For a one-dimensional compressible viscous flow, the normal stress is given by the following
Expression:

k
Oze = —P-+ (%/t” + /t') ek (gg—) (159)

while the momentum and mass conservation equations describing acoustic waves reduce
to:

Ju dp .0 ,0u

gu Op U Uy
po ot Oz T x ( a;r) (160)
Jap Ou
T —Po 9r’ (161)
in which
~ 4 " 11—k
ft= 3 o+ )egg (162)

and po is the unperturbed value of the density.

After elimination of the pressure p, one arrives at the governing equation for acoustic
waves :

e = omt 3) ¢ T a5, (163)

J*u , 0%u 0* [ou\" s dp . fn
) ——— :
Y 0t0x ‘

Usually the last term describing viscous effects is ignored since it is much smaller than
the clastic term. However, in our case the viscous term can be as sizable as the elastic
term if the velocity gradients are small, i.e., if

Ou
5; < € (164)

In order to simplify Eq. (163) let us introduce. a new variable 7 instead of t:
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re=t-C (165)
c
Then Eq. (163) reduces to:
ou  ,0 (ou\t , v -
A S (i R S A 1
or ¢ or (07‘) s (e0c) _ (166)

Eq. (166) is identical to Eq. (77) if the variables & and 7 are replaced by ¢ and y,

respectively.

Let us find an approximate solution to Eqg. (166) subject to the following initial
condition:

w( T) = o(r), -~ 00 <a <+ (167)

Seeking the solution in the form:

u = /UA(JT)fA(7 )dA (168)

and substituting (168) into (166) one obtains:

A= lUDFT (169)

These equations are similar to Egs. (96), and therefore, their solutions (97) can be simpli-

fied to the approximations (99) which lead to the following form:

A fa=0, fi=et. (170)
Then the functions uy can be found from the following equations:

dux +aZA22% -0 (171)
dx
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whence

. 1
1—-k)a?)\* |i-%
uy = ul [1—£ 3)——1] (172)
Uy
Substituting (170) and (172) into (168), onc arrives at a Fourier integral:
1- Ek)a?A? 7%
u = /u?\ [1 _a- 3(1__ .z] eATdA (173)
Uy
Since
(1) = /ug e d\, (174)
the values of u} can be found as a Fourier coefficients for ¢(7):
i :
0 —_ - 1AT
' d 175
&5 [etere i ae a7

Substituting (175) into Eq. (168) one obtains the solution inthe following integral form:

o0 1 ) 1—-k Ti-k ]
U= / {[‘)— /go(f) eI d{] —-(1- k)a?/\Qr} e dA (176)
00 LT 3 .
Let us assume that
u(O, 7)=¢(7)=1ug sinwT (177)
Then
A\ = wk+], ug 2z U (178)

and, as follows from Eq. (1 76)
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k o \
u = fuy”* — (1 - k)a?wk s sinw(t — —) (179)
[

Eq. (179) describes a travelling acoustic wave generated by a sinusoidal source of sound
located at z = O. The wave propagates with the classical acoustic speed ¢? = dp/dp, but
the amplitude of this wave gradually decreases with increase of the dist ante « from the
source.

Eventually, atthe distance

—k (1—k 1—k
wl =FLO=K (1 k)e? wow

(1—k)a2w? ™ w2 (cen )

|« |> ¢ (180)

the sound vanishes being absorbed due? to the viscosity.

As follows from Eq. (180), the critical distance ¢ depends upon two new physical
const ants: k£ and €o. As can be expected, this distance decreases with the increase of
viscosity » and the frequency w.

It should be recalled that in the classical case the solution to the same problem, instead
of (1 79), would be:

u=wg ™Y T sinw(t — %) (181)
C

This means that an acoustic wave is never fully absorbed; the distance over which the
source of sound can be detected, is infinitely large. Eq. (180) gives a correction to this
idealized result stating that this distance is finite.

10. APPLICATION TO ELASTIC BODIES
Effects, similar to those described in viscous fl uids, occur in elastic bodies if dissipa-

tion processes are. taken into account. Indeed, in this case the total stress tensor can be
combined from the elastic and viscous components:

0 =0, 0y, (182)
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while usually

Oe >> Oy (183)

However, in domains close to equilibria, the elastic stresses vanish, and

oy > 0, ’ (184)

But in these domains the. viscous stress can be represented by Eq. (26), and therefore,
the governing equations take the form (55). This mecans that all the effects described
above including finite time of approaching equilibria, non-uni queness of solutions starting
from equilibria, as well as finite distance of absorption of an acoustic wave, occur in elastic
bodies in the domains close to equilibria.

11. DISCUSSION AND CONCLUSION

Plasticity effects are well-pronounced in heavy viscous liquids such as lubricators and
dyes, but they have never been st udied in c.lassie.al Newtonian fluids like water, or air,
presumably because they were expected to be vanishingly small. Our analysis demonstrates
that although the quantitative contribution of these effects is small indeed, qualitatively
even infinitesimal static friction leads to two new fundamental properties which are: the
theoretically finite t imes of approaching equilibria, and the n on-uniqueness of solutions
which start at equilibria.

The first property can be associated with the paradox of irreversibility - one of the
most fundament al and yet not fully understood problems in physics. Indeed, the concept
of vise.cwity can be derived, on the microscopic level of descript ion, from the fully reversible
equations of Hamilt oni an d ynamics. This means that the irreversible processes in viscous
flows are completely composed of reversible events. One of the most convincing and well
accepted explanat ions of this paradox is that the change from an ordered arrangement to
a disordered arrangement on the microscopic level as a source of irreversibility is much

more probable than a change in the opposite direction.

In other words, any macroscopic system, in principle, canreturn to its initial state
passing through all of its previous states; however, the probability of such an event is
so small (but not zero!), that the period of time during which this event can occur is
extremely large in comparison to the time scale of the macroscopic motions. However, the
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Navier-Stokes equations, or their simplified version - the diffusion equation - do not have
any time sale: the time of approaching an equilibrium is unbounded, and therefore, these
equations exclude any reversible solutions even if ¢t -+ m. The only logical way out of this
situation is to introduce a time-scale into the Navier-Stokes equations so that the time of
approaching an equilibrium will be finite. Then one can argue that this time is not large
enough to include reversible solutions. Actually this time scale was introduced by relaxing
the Lipschitz condition at the equilibrium states (sce Eq. 52). Simple experiments which
allow one to find the constants defining this scale were also described.

The second property is linked to another fundamental, but still unsolved problem of
theoretical physics - the problem of turbulence. From a formal mathematical viewpoint,
turbulence results from dynamical instability of the Navier-Stokes equations when the
Reynolds number exceeds certain critical values, and it is described by stochastic. solutions.
But how can such solutions occur from a fully deterministic model? A physical explanation
is very simple: possible uncert aint ies and small errors (which always can be interpreted as
random components of initial conditions)are amplified by the mechanism of instability,
and that leads to the stochasticity of the solutions for supercritical Reynolds numbers. In
other words, turbulence is caused by a random input into the fully deterministic Navier-
Stokes equations. However, a mathematician can argue that, in principle, there is always
a possibility that there are no uncertainties or errors in initial conditions at all, and then
the solutions will never become stochastic. Tile modified version of the Navier-Stokes
equat ions at t ains a very fund ament al new property: it gene rates stochasticity as a result
of the non-uniqueness of t he solution which, in turn, follows fromrelaxat ion of the Lipschit z
condition at equilibrium states. In cases of dynamical instability the random components
of the solution are amplified and that leads t o stochast ic soluti ons simulating t urbulence.
Otherwise these random components decay and vanish.

It should be stressed that although the qualitative differences between the. classical
and modified Navicr- Stokes equat ions are fund ament al, all the new effects emerge within
vanishingly small neighborhoods of equilibriwmn states which are the only domains where
the modified governing equations are different from classical. This means that the formal
differences between the solutions to classical and modified models may be not detectable
in domains which do not include equilibrium states.
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Figure 1.

Behavior of terminal attractor and repeller.
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Figure 2

Limit case of stress-strain relationship for viscoplastic body.
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APPENDIX

The governing equations of classical dynamics based upon the? Newton laws:
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where L is the Lagrangian, and g, ¢i are the general zed coordinates and velocities, include
a dissipation function R( ¢i ¢; ) which is associated with the friction forces:
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The structure of the functions (2) does not follow from the Newton’s laws, and, strictly
speaking, some addit ional assumptions should be made in order to define it. The “nat ural”
assumption (which has been never challenged) is th at these functions can be expanded in
Taylor series with respect to an equilibrium state
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Obviously this requires the existence of the derivatives:
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1.e., Fmust satisfy the Lipschitz condition. This condition allows one to describe the
Newtonian dynamics within the mathematical framework of c.lassie.al theory of differential
equations. However, there is a cert ain price paid for such a mathematical “ convenience”:
the Newtonian dynamics with dissipative forces reinains full y reversible in the sense that
its governing equations are invariant with respect to time inversion, ¢+ —t. As stressed
by Prigogine, I., in this view future and past play the same role: nothing can appear in
future which could not alread y exist in past since the traject ories followed by particles
can never cross (unless i? — 4 0o ). This means that classical dynamics cannot explain the
emergency of new d ynamical pat terns in nature in the. same way in which non-equilibrivin
thermodynamics does.

In order to trivialize the mathematical part of our argumentation let us consider an
one-dimensional motion of a particle decelerated by a friction force:




mv = F(v) (5)

in which m is mass, and v is velocity. Invoking the assumption (4) onecan linearize the
force F' with respect to the equilibrium v = O:

F——»»avatv—ao,az—_(g@)v=0>o (6)
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and the solution to (5) for v — O is:

v == v,e”m — 0 at t — 00, v, = v(0) (7)

As follows from (7), the equilibrium v = O cannot be approached in finite time. The
usual explanation of such a paradox is that,, to accuracy of our limited scale of observat ion,
the particle “actually” approaches the equilibrium iu finite? time. In other words, eventually
the trajectories (7) and v = O become so close that we cannot distinguish them. The same
type of explanation is used for the emergence of chaos: if two trajectories originally are
“very dose”, and then they diverge exponentiall y, th e same init ial condi t ions can be applied
to either of them, and therefore, the. motion cannot be traced.

Hence, there are variety of phenomena whose explanations cannot be based directly
upon the classical dynamics: in addition, t hey require some “words”about a scale of
observat ion, ‘(viny close” trajectories, etc..

In this note we propose a new structure of the. dissipation forces which eliminates
the paradox discussed above and makes the Newtonian dynamics irreversible. The main
properties of the new structure are based upon a violation of the Lipschitz condition (4).
Turning to the example (5), let us assume that
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in which p is an odd number.
By selecting large p, one can make? k close to 1 so that Egs. (6) and (8) will be almost

identical everywhere excluding a small neighborhood of the equilibrium point v = O, while,
as follows from (8), at this point:
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Hence, the condition (4) is violated, the friction force grows sharply at the equilibrium
point, and then it gradually approaches the straight line (6). This effect can be interpreted
asa jump from static to kinetic friction.

It appears that this ‘(small” difference between the friction forces (6) and (S) leads to
fundamental changes in Newtonian dynamics.

Firstly, the time of approaching the equilibrium v= 0O becomes finite. Indeed, as
follows from Egs.(5)and (8):

; /° mdv muol K < (10)
p— -— = — 00
° v, @ a(l —k)

Obviously this integral divergesinthe classical case when k> 1.

Secondly, the motion described by Eq. (8)

= 1-k _ —(l — k)t +
v =[o,7" = —(1 = k)T (11)

is irreversible since the time-backward motion
—k « < 3
vo= {[v, ™" - o Ol k) (—t))et2 /e (12)

is imaginary. (one can verify that the classical version of this mot ion (7) is fully reversible
ift < m) .

As shown by Zak, M. [2], the equilibrium pointv = O of Eq. (8) represents a terminal
attractor which is “Iinfimtely’ stable and is intersected by all the attracted transients, Fig.
2. Therefore, the uniqueness of the solution at v = O is violated, and the motion for t < ¢,
(sec Eel. (10)) is totally “forgotten”. (This is a mathematical implication of irreversibility
of the dynamics (8)).

So far we were cone.emecl with stabilizing effects of dissipative forces. However, as
wall-known from dynamics of non-conservative systems, these forces can destabilize the
mot ion when they feed the external energy into the system (t he transmission of energy from
laminar to turbulent flow in fluid dynamics, or from rotations to oscillations in dynamics
of flexible s yst ems). In order to capt ure the fundament al propert ies of these effects in case
of “terminal” dissipative force? (8) by using the simplest mathematical model, let us turn
to Eel. (5) and assume that now the friction force feeds energy into the system:
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muo = avk, k= ;ﬁi <1 (13)

One can verify that for Eq. (13) the, (equilibrium point v = O becomes a terminal
repeller, and since

v

dv

= kav*!

—o0oatv—0 (14)

it is “infinitely’ unstable. If the initial condition is infinitely dose to this repeller, the
transient solution will escape it during a finite time period:

0 dv_ wl7k
i = — =2 _ < 15
° l—»o vb 1-k (15)

while for a regular repeller, the time would be infini te.

As in the case of a terminal attractor, here the motion is also irreversible since the
inversion of time in the solution to Eq. (14).

v:ﬁ:[%(l—k)t]r—‘? (16)

leads to imaginary values of v.

But in addition to that, terminal repellers possess even more surprising characteristics: -
the solution (16) becomes tot ally unpredict able. Indeed, t wo different motions described
by the solution (16) are possible for “almost the same” (v, = 4+¢ + O, orv, = —¢ —
O at t =— O) initial conditions. The most essent ial propert y of this result is that the
divergence of these two solutions is characterized by an unboundedrate:

1 t]/]_k
o= ‘1}1111‘)(; In —l;—;—r) — oo at |v, [-= 0 (17)

In contrast to the classical case where t, — 0o, here 0 can be defined in an arbitrarily
small time interval t,, since dining this interval the initial infinitesimal distance bet ween
the solutions becomes finite. Thus, a terminal repeller represents a vanishingly short,
but infinitely powerful “pulse of unpredictability” which is pumped into the system via
terminal dissipative forces. Obviously failure of the uniqueness of the solution here results
from the violation of the Lipschitz rendition (4) at v = O.
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As ‘known from classical dynamics, the combination of stabilizing and destabilizing
effects can lead to a new phenomenon: chaos. 1 n order to describe similar effects in
dynamics with terminal dissipative forces let us slightly modify Eq. (13):

mo = av’ cos wt (18)

Here stabilization and destabilization effects alternate. With the initial condition
v -i 0at t — O the exact solution to Eq. (18) consists of a regular solution:

V= :t[M sinwt]1-%F, v + O; (19)
and a singular solution:

v=20 (20)

During the first period O < ¢ < 7/2w the equilibrium point (20) is a terminal repeller.
Therefore, within this period, the motion can follow one of t wo possible trajectories (19)
(each with the probability 1/2) which diverge with unbounded rate (17) at v = O. During
the next period 7 /2w < t <37 /2w the equilibrium point (20) becomes a terminal attractor;
the solution approaches it at ¢ = 7w and it remains motionless until ¢ > 37 /2w. After that
the terminal attractor converts into terminal repeller, and the solution escapes again, etc.

It is important to notice that each time the system escapes the terminal repeller, the
solution splits into two symmetric branches, so that there is 2" possible scenarios of the.
oscillations with respect to the renter v = O, while each scenario hasthe probability 2-”
(n is the number of cycles). Hence, the motion (19) resembles chaotic oscillations known
from classical dynamies: it combines random characterist ics wit] 1 the attraction to a center.
However, in classical case the chaos is caused by a supersensitivity to the initial conditions,
while the uniqueness of the solution for fixed initial conditions is guaranteed. In contrast
to that, the chaosin the oscillations (19) is caused by the failure of the uniqueness of
the solution at the equilibriwin points, and it has a well organized probabilistic structure.
Since the time of approaching the equilibrium point v = O by the solution (19) is finite,
this type of chaos can be died terminal.
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